Sciencia Acta Xaveriana
An International Science Journal ISSN. 0976-1152

Volume 8
No. 1
pp. 63-76
March 2017

THE TWO-PEBBLING PROPERTY ON SHADOW GRAPH OF A PATH

A. LOURDUSAMY ${ }^{1}$

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, INDIA.

> S. SARATHA NELLAINAYAKI ${ }^{2}$
> Department of Mathematics, St. Xavier's College (Autonomous) Palayamkottai - 627 002, Tamil Nadu, INDIA.

E-mail: ${ }^{1}$ lourdusamy15@gmail.com, ${ }^{2}$ sarathas1993@gmail.com

Abstract

Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex and the placement of one of those pebbles at an adjacent vertex. The pebbling number, $f(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f(G)$ pebbles, we can move a pebble to any specified vertex by a sequence of pebbling moves. A graph G has the 2-pebbling property if for any distribution with more than $2 f(G)-q$ pebbles, where q is the number of vertices with at least one pebble, it is possible, using the sequence of pebbling moves, to put 2 pebbles on any vertex. In this paper, we find the pebbling number for the shadow graph of a path and show that it satisfies the $2-$ pebbling property.
Keywords: Pebbling number, 2-pebbling property, Shadow graph.

1. Introduction

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias and Saks, has been the topic of vast investigation with significant observations. Having Chung [1] as the forerunner to familiarize pebbling into writings, many other authors too have developed this topic. Hulbert published a survey of graph pebbling [5].

Consider a connected graph with fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and placement of one of those pebbles at an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number $f(G, v)$ such that for every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of G is the smallest number, $f(G)$ such that from any distribution of $f(G)$ pebbles, it is possible to move a pebble to any specified target vertex by a sequence of pebbling moves. Thus $f(G)$ is the maximum value of $f(G, v)$ over all vertices v.

Chung [1] defined the 2-pebbling property of a graph. Given a distribution of pebbles on G, let p be the number of pebbles, q be the number of vertices with at least one pebble, we say that G satisfies the 2 - pebbling property, if it is possible to move two pebbles to any specified vertex whenever p and q satisfy the inequality $p+q>2 f(G)$.

In this paper, we find the pebbling number for the shadow graph of a path and show that the 2-pebbling property. In Section 2, we give some useful results for the subsequent sections. In Section 3, we determine the pebbling number for the shadow
graph of a path $D_{2}\left(P_{n}\right)$. In Section 4, we prove that the shadow graph of a path $D_{2}\left(P_{n}\right)$ satisfies the 2-pebbling property.

2. Preliminary

We now introduce some definitions and notations which will be useful for the subsequent sections. For graph theoretic terminologies we refer to [4].

Definition 2.1. The shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G, say G_{1} and G_{2} and joining each vertex u in G_{1} to the neighbours of the corresponding vertex v in G_{2}.

The shadow graph of a path is denoted by $D_{2}\left(P_{n}\right)$. Label the vertices in the first copy of the path by $x_{1}, x_{2}, \ldots, x_{n}$ and the vertices in the second copy of the path by $x_{n+1}, x_{n+2}, \ldots, x_{2 n}$ starting from the left.

Figure 1.1. $\quad D_{2}\left(P_{n}\right)$

Theorem 2.2 [3] Let P_{n} be a path on n vertices. Then $f\left(P_{n}\right)=2^{n-1}$.
Theorem 2.3. [2] Let $K_{1, n}$ be a star graph, where $n>1$. Then $f\left(K_{1, n}\right)=n+2$.

Theorem 2.4. [6] (i). Let $C_{2 k}$ be an even cycle on $2 k$ vertices. Then $f\left(C_{2 k}\right)=2^{k}$.
(ii) Let $C_{2 k+1}$ be an odd cycle on $2 k+1$ vertices. Then $f\left(\mathrm{C}_{2 k+1}\right)=2\left\lfloor\frac{2^{k+1}}{3}\right\rfloor+1$.

Theorem 2.5. [6] Let G be a graph with diameter $G=2$. Then G has the 2-pebbling property.

Theorem 2.6. [3] All paths satisfy the 2-pebbling property.
Theorem 2.7. [3] All cycles have the 2-pebbling property.

3. Pebbling on the Shadow graph of a path $D_{2}\left(P_{n}\right)$

Remark 3.1. A distribution of pebbles on the vertices of the graph G is a function $p: V(G) \rightarrow N \cup\{0\}$. Let $p(v)$ denote the number of pebbles on the vertex v and $p(\mathrm{~A})$ denote the number of pebbles on the vertices of the set $A \subseteq V(G)$. Let v be a target vertex in the graph G. If $p(v)=1$ or $p(u) \geq 2$, where $u v \in E(G)$, then we can move a pebble to v easily. So we always assume that $p(v)=0$ and $p(u) \leq 1$ for all $u v \in E(G)$, when v is the target vertex.

For $n=2, D_{2}\left(P_{2}\right)$ is isomorphic to C_{4}, we have the following theorem.

Theorem 3.2. [3] For the shadow graph of the path $P_{2}, f\left(D_{2}\left(P_{2}\right)\right)=4$.
Theorem 3.3. For the shadow graph of the path $P_{3}, f\left(D_{2}\left(P_{3}\right)\right)=6$.

Proof. Placing 3 pebbles on x_{1} and one pebble on each x_{3} and x_{4}, we cannot reach x_{6}. Thus $f\left(D_{2}\left(P_{3}\right)\right) \geq 6$.

Now we prove that $f\left(D_{2}\left(P_{3}\right)\right) \leq 6$. Let D be any distribution of 6 pebbles on the vertices of $D_{2}\left(P_{3}\right)$.

Case 1: Let x_{3} be the target vertex.
Clearly $p\left(x_{3}\right)=0, p\left(x_{2}\right) \leq 1$ and $p\left(x_{6}\right) \leq 1$ by Remark 3.1. If $p\left(x_{2}\right)=1$ we can move another pebble to x_{2}, since x_{1} or x_{4} or x_{6} contains at least 2 pebbles. Therefore assume that $p\left(x_{2}\right)=0$. Since $<D_{2}\left(P_{3}\right)-\left\{x_{2}\right\}>$ is isomorphic to $K_{1,4}$ and $f\left(K_{1,4}\right)=6$, we are done. Similarly, we are done if x_{1}, x_{4} and x_{6} are the target vertices.

Case 2:Let x_{2} be the target vertex.
Clearly $\quad p\left(x_{2}\right)=0, \quad p\left(x_{1}\right) \leq 1, \quad p\left(x_{3}\right) \leq 1, \quad p\left(x_{4}\right) \leq 1 \quad$ and $\quad p\left(x_{6}\right) \leq 1$. Suppose $p\left(x_{i}\right)=1$ for some $i \in\{1,3,4,6\}$. Then using the path $\boldsymbol{P}: x_{5} x_{i} x_{2}$ we can pebble the target. Suppose $p\left(x_{i}\right)=0$ for every $i \in\{1,3,4,6\}$. Then $p\left(x_{5}\right) \geq 5$ and hence we are done. Similarly, we are done if x_{5} is the target vertex.

Theorem 3.4. For the shadow graph of a path $\boldsymbol{P}_{\boldsymbol{n}}$, $f\left(D_{2}\left(P_{n}\right)\right)=2^{n-1}+2,(n \geq 4)$.

Proof. Placing 2^{n-1} pebbles on x_{1} and one pebble on each x_{n} and x_{n+1}, we cannot reach $x_{2 n}$. Thus $f\left(D_{2}\left(P_{n}\right)\right) \geq 2^{n-1}+2$. Now we prove the sufficient part by induction on n. Clearly, it is true for $n=3$, by Theorem 3.3. So, we assume the result is true for $4 \leq n^{\prime}<n$. Let D be any distribution of $2^{n-1}+2$ pebbles on the vertices of $D_{2}\left(P_{n}\right)$.

Case 1 : Let v be any target vertex other than x_{1}, x_{n}, x_{n+1} and $x_{2 n}$.

Clearly, $p(v)=0$ by Remark 3.1. We note that $d\left(u, x_{1}\right) \leq n-2$ and $d\left(u, x_{n+1}\right) \leq n-2$ for every $u \notin\left\{x_{n}, x_{2 n}\right\}$. If $p\left(x_{1}\right) \geq 2^{n-2}$ or $p\left(x_{n+1}\right) \geq 2^{n-2}$, then we are done. Therefore assume that $p\left(x_{1}\right) \leq 2^{n-2}-1$ and $p\left(x_{n+1}\right) \leq 2^{n-2}-1$. By moving as many pebbles as possible from x_{1} to x_{2} and from x_{n+1} to x_{n+2}, we see that the subgraph $<D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{n+1}\right\}>\cong D_{2}\left(P_{n-1}\right)$ contains at least $2^{n-2}+2$ pebbles and hence we are done, by induction.

Case 2 : Let v be any target vertex, where $v \in\left\{x_{1}, x_{n}, x_{n+1}, x_{2 n}\right\}$.

Without loss of generality, we assume that $v=x_{1}$. Let $p\left(x_{2}\right)+p\left(x_{3}\right)+\ldots+p\left(x_{n-1}\right)+p\left(x_{n+1}\right)+\ldots+p\left(x_{2 n-1}\right)=p$.

Suppose $p \geq 3$. Then $p\left(x_{n}\right)+p\left(x_{2 n}\right)=2^{n-1}+2-p \leq 2^{n-1}-1$. After
moving as many pebbles as possible from x_{n} to x_{n-1} and from $x_{2 n}$ to $x_{2 n-1}$, we see that $<D_{2}\left(P_{n}\right)-\left\{x_{n}, x_{2 n}\right\}>\cong D_{2}\left(P_{n-1}\right)$ contains at least $2^{n-2}+2$ pebbles and hence we are done, by induction. Therefore assume that $p \leq 2$.

Subcase 2.1: Let $p=0$.
Clearly, $p\left(x_{n}\right)+p\left(x_{2 n}\right)=2^{n-1}+2$. After moving as many pebbles as possible from x_{n} to x_{n-1} and from $x_{2 n}$ to x_{n-1}, the vertex x_{n-1} contains at least 2^{n-2} pebbles. Since $d\left(x_{1}, x_{n-1}\right)=n-2$, we are done.

Subcase 2.2: Let $p=1$.
Now $p\left(x_{n}\right)+p\left(x_{2 n}\right)=2^{n-1}+1$. After moving as many pebbles as possible from x_{n} to x_{n-1} and from $x_{2 n}$ to x_{n-1}, the vertex x_{n-1} contains at least $\left\lfloor\frac{2^{n-1}+1-1}{2}\right\rfloor=2^{n-2}$ pebbles. Since $d\left(x_{1}, x_{n-1}\right)=n-2$, we are done.

Subcase 2.3: Let $p=2$.
Now $p\left(x_{n}\right)+p\left(x_{2 n}\right)=2^{n-1}$. Then we can move at least $\left\lfloor\frac{2^{n-1}-2}{2}\right\rfloor=2^{n-2}-1$ pebbles to x_{n-1} or $x_{2 n-1}$. Hence we can reach the vertex x_{2}. If $p\left(x_{n+1}\right)=2$ we can move one pebble to x_{2} and hence we reach the target. Therefore assume that $p\left(x_{n+1}\right) \leq 1$. Since $p=2$, there exists an j such that the vertex x_{j} is occupied, where $j \in\{2,3, \ldots$ $n-1, n+2, \ldots, 2 n-1\}$ and hence we can easily reach the target.

4. The 2-pebbling property

In this section, we show that the shadow graph of a path $D_{2}\left(P_{n}\right)$ satisfies the 2-pebbling property. Since $D_{2}\left(P_{2}\right)$ is isomorphic to C_{4} and by Theorem 2.7, $D_{2}\left(P_{2}\right)$ has the 2 - pebbling property.

Remark 4.1. Consider the graph G with n vertices and $2 f(G)-q+1$ pebbles on it and we choose a target vertex v from G. If $p(v)=1$, then the number of pebbles remaining in G is $2 f(G)-q \geq f(G)$, since $f(G) \geq n$ and $q \leq n$, and hence we can move the second pebble to v. Let us assume that $p(v)=0$. If $p(u) \geq 2$, where $u v \in E(G)$, we move a pebble to v from u. Then the graph G has at least $2 f(G)-q+1-2$ pebbles, since $f(G) \geq n$ and $q \leq n-1$, and hence we can move the second pebble to v. So, we always assume that $p(v)=0$ and $p(u) \leq 1$ for all $u v \in E(G)$, when v is the target vertex.

Theorem 4.2. The graph $D_{2}\left(P_{3}\right)$ satisfies the two-pebbling property.

Proof. Since the diameter of $D_{2}\left(P_{3}\right)$ is two, by Theorem 2.5 we conclude that, the graph $D_{2}\left(P_{3}\right)$ satisfies the two-pebbling property.

We first prove the following lemma.
Lemma 4.3. Given any distribution of $2 f\left(D_{2}\left(P_{n}\right)\right)-q+1$ pebbles on the vertices of $D_{2}\left(P_{n}\right), n \geq 3$, we can move two pebbles to x_{1} and retain at least two
pebbles on $D_{2}\left(P_{n}\right)$. If $p\left(x_{n+1}\right)=0$ we can move two pebbles to x_{1} and retain at least 3 pebbles on $D_{2}\left(P_{n}\right)$.

Proof. The proof is by induction on n. Let $n=3$. Let D be any distribution of $2(6)-q+1=13-q$ pebbles on it. Clearly $p\left(x_{1}\right)=0$, $p\left(x_{2}\right) \leq 1$ and $p\left(x_{5}\right) \leq 1$ by Remark 4.1. Then $q \leq 5$.

Suppose $q=5$. Now 8 pebbles are distributed on the vertices of the graph $D_{2}\left(P_{3}\right)$. Also $p\left(x_{1}\right)=0, p\left(x_{2}\right)=1$ and $p\left(x_{5}\right)=1$. Thus we can easily move 2 pebbles to x_{1} using 6 pebbles and hence we can retain 2 pebbles. Therefore assume that $q \leq 4$. Then either x_{2} or x_{5} is occupied.

Without loss of generality, assume $p\left(x_{2}\right)=1$. Then using 2 pebbles we can move an additional pebble to x_{2} and hence we can move a pebble to x_{1}. Now the remaining number of pebbles distributed on the vertices of $D_{2}\left(P_{3}\right)$ is at least $13-q-3 \geq 10-q \geq 6$, since $q \leq 4$. By Theorem 2.3, we can move an additional pebble to x_{1} at a cost of at most $2^{2}=4$ pebbles and hence we can retain 2 pebbles. Similarly we are done, if $p\left(x_{2}\right)=0$ and $p\left(x_{5}\right)=1$. Therefore assume that $p\left(x_{2}\right)$ $=0=p\left(x_{5}\right)$.

If $p\left(x_{4}\right) \geq 2$, then one pebble can be moved to x_{2}. Using 2 pebbles we can move an additional pebble to x_{2} and thus we can move a pebble to x_{1}. Now the remaining number of pebbles distributed on the vertice of $D_{2}\left(P_{3}\right)$ is at least $13-q-4=9-q \geq 6$, since
$q \leq 3$. Then by Theorem 3.3, we can move a pebble to x_{1} at a cost of at most 4 pebbles and hence we can retain at least 2 pebbles. Therefore assume that $p\left(x_{4}\right) \leq 1$.

Suppose $p\left(x_{4}\right)=0$. Then $p\left(x_{3}\right)+p\left(x_{6}\right)=13-q \geq 11$. Clearly using 8 pebbles we can move 2 pebbles to x_{1} and retain at least 3 pebbles. Therefore assume $p\left(x_{4}\right)=1$. Then $p\left(x_{3}\right)+p\left(x_{6}\right)=13-q \geq 10$. Again using 8 pebbles we can move 2 pebbles to x_{1} and retain at least 2 pebbles. Hence the lemma holds, when $n=3$.

Assume the Lemma is true for $4 \leq n^{\prime}<n$. Let D be any distribution of $2\left(2^{n-1}+2\right)-q+1$ pebbles on the vertices of $D_{2}\left(P_{n}\right)$. Clearly, $p\left(x_{1}\right)=0, p\left(x_{2}\right) \leq 1$ and $p\left(x_{n+2}\right) \leq 1$ by Remark 4.1. Suppose $q=2 n-1$. Then $p\left(x_{2}\right)=1$ and $p\left(x_{n+2}\right)=1$. Using $2 n$ pebbles, we can easily put 2 pebbles to x_{1} and the remaining number of pebbles is

$$
2\left(2^{n-1}+2\right)-q+1-2 n=2^{n}+6-4 n=2+\left(2^{n}+4-4 n\right)
$$

Since $n \geq 4,2\left(2^{n-1}+2\right)-q+1-2 n \geq 2$. Hence we can retain at least 2 pebbles on $D_{2}\left(P_{n}\right)$. Therefore assume that $q \leq 2 n-2$. Then either x_{2} or x_{n+2} is occupied. Without loss of generality, assume $p\left(x_{2}\right)=1$ and $p\left(x_{n+2}\right)=0$. We can move a pebble to x_{2} at a cost of at most 2^{n-2} pebbles and hence we can move a pebble to x_{1}. Now the remaining number of pebbles is at least

$$
2\left(2^{n-1}+2\right)-q+1-2^{n-2}-1=2^{n-1}+2+2^{n-2}+2-q .
$$

Since $q \leq 2 n-2$ and $n \geq 4$, we conclude that

$$
2\left(2^{n-1}+2\right)-q+1-2^{n-2}-1 \geq 2^{n-1}+2=f\left(D_{2}\left(P_{n}\right)\right)
$$

By Theorem 3.4, we can move a pebble to x_{1} at a cost of at most 2^{n-1} pebbles and retain at least 2 pebbles. Similarly we are done, if $p\left(x_{2}\right)=0$ and $p\left(x_{n+2}\right)=1$. Therefore assume $p\left(x_{2}\right)=0$ and $p\left(x_{n+2}\right)=0$. If $p\left(x_{n+1}\right) \geq 2$, one pebble can be moved to x_{2}. And we can move an additional pebble to x_{2} at a cost of at most 2^{n-2} pebbles, since $\operatorname{dist}\left(x_{2}, u\right) \leq n-2$, for every $u \in V\left(D_{2}\left(P_{n}\right)\right)$. Thus we can put 2 pebbles to x_{2} and hence a pebble to x_{1}. Now the remaining number of pebbles is at least

$$
2\left(2^{n-1}+2\right)-q+1-2^{n-2}-2 \geq 2^{n-1}+2=f\left(D_{2}\left(P_{n}\right)\right)
$$

since $q \leq 2 n-3$. By Theorem 3.4, we can move a pebble to x_{1} at a cost of at most 2^{n-1} pebbles and retain at least 2 pebbles. Therefore assume $p\left(x_{n+1}\right) \leq 1$.

Case 1: Let $p\left(x_{n+1}\right)=0$.

In this case, $2\left(2^{n-1}+2\right)-q+1$ pebbles are distributed on the vertices of $<D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{2}, x_{n+1}, x_{n+2}\right\}>$. Thus using $2\left(2^{n-2}+2\right)-q+1$ pebbles, we can move 2 pebbles to x_{2} and retain at least 3 pebbles,
since $p\left(x_{n+2}\right)=0$ and by induction. Therefore one pebble can be moved to x_{1}. Now the remaining number of pebbles is at least

$$
2\left(2^{n-1}+2\right)-q+1-\left[2\left(2^{n-2}+2\right)-q+1\right]+3=2^{n-1}+2+1=f\left(D_{2}\left(P_{n}\right)\right)+1
$$

By Theorem 3.4, we can move a pebble to x_{1} at a cost of at most 2^{n-1} pebbles and retain at least 3 pebbles.

$$
\text { Case } 2 \text { : Let } p\left(x_{n+1}\right)=1
$$

Now using $2\left(2^{n-2}+2\right)-(q-1)+1$ pebbles, we can move 2 pebbles to x_{2} and retain at least 3 pebbles, since $p\left(x_{n+2}\right)=0$ and by induction. Therefore one pebble can be moved to x_{1}. Now the remaining number of pebbles is at least

$$
2\left(2^{n-1}+2\right)-q+1-\left[2\left(2^{n-2}+2\right)-(q-1)+1\right]+3=2^{n-1}+2=f\left(D_{2}\left(P_{n}\right)\right)
$$

By Theorem 3.4, we can move a pebble to x_{1} at a cost of at most 2^{n-1} pebbles and retain at least 2 pebbles on $D_{2}\left(P_{n}\right)$.

Theorem 4.4. The graph $D_{2}\left(P_{n}\right)$ satisfies the two-pebbling property.
Proof. The proof is by induction on n. Clearly, the result is true for $n=3$ by Theorem 4.2. Assume the theorem is true for $4 \leq n^{\prime}<n$.

Let D be any distribution of $2 f\left(D_{2}\left(P_{n}\right)\right)-q+1$ $=2\left(2^{n-1}+2\right)-q+1$ pebbles on the vertices of $D_{2}\left(P_{n}\right)$.

Case 1: Let x_{1} be the target vertex.

By Lemma 4.3, we can move 2 pebbles to x_{1}. By symmetry we are done, if x_{n}, x_{n+1} and $x_{2 n}$ are the target vertices.

Case 2:Let x_{2} be the target vertex.
Clearly $p\left(x_{2}\right)=0, \quad p\left(x_{1}\right) \leq 1, \quad p\left(x_{3}\right) \leq 1, \quad p\left(x_{n+1}\right) \leq 1$ and $p\left(x_{n+2}\right) \leq 1$ by Remark 4.1. Now the number of pebbles distributed on the vertices of $\left\langle D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{n+1}\right\}\right\rangle$ is at least $2\left(2^{n-1}+2\right)-q+1-2$ $\geq 2\left(2^{n-2}+2\right)-q_{1}+1$, where q_{1} is the number of occupied vertices in $<D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{n+1}\right\}>$. Clearly $q \geq q_{1}$. Thus we can move 2 pebbles to x_{2} by induction. By symmetry we are done, if x_{n-1}, x_{n+2} and $x_{2 n-1}$ are the target vertices.

Case 3: Let x be the target vertex, other than x_{1}, x_{2}, $x_{n-1}, x_{n}, x_{n+1}, x_{n+2}, x_{2 n-1}$ and $x_{2 n}$.

If $p\left(x_{1}\right)+p\left(x_{n+1}\right) \geq 2^{n-2}+1$, then we can move as many pebbles as possible from x_{1} and x_{n+1} to x_{2} and hence by using the path $P: x_{2} x_{3} \cdots x$, we are done.

Suppose $p\left(x_{1}\right)+p\left(x_{n+1}\right) \leq 2^{n-2}$. Then $<D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{n+1}\right\}>$ has at least $2\left(2^{n-1}+2\right)-q+1-2^{n-2} \geq 2\left(2^{n-2}+2\right)-q_{1}+1$, where q_{1} is the number of occupied vertices in $<D_{2}\left(P_{n}\right)-\left\{x_{1}, x_{n+1}\right\}>$, since $q>q_{1}$. Thus we can move 2 pebbles to x by induction.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAMJ. Disc. Math., 2(4) (1989), 467-472.
[2] R. Feng and J. Y. Kim, Graham's pebbling conjecture of production complete bipartite graph, Sci. China Ser. A, 44(2001),817-822.
[3] J. A. Foster and H. S. Snevily, The 2-pebbling property and a conjecture of Grahams, Graphs and Combin., 16(2000), 231 - 244.
[4] Gary Chartrand and Lesniak, Graphs and digraphs, Fourth edition, CRC Press, Boca Raton, 2005.
[5] G. Hurlbert, A survey of graph pebbling, Congressus Numerantium 139 (1999), 4164.
[6] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congr. Numer., 107(1995), $65-80$.

